

Co-funded by the Erasmus+ Programme of the European Union

Federation of remote labs, the PILAR approach

Platform Integration of Laboratories based on the Architecture of visiR – PILAR

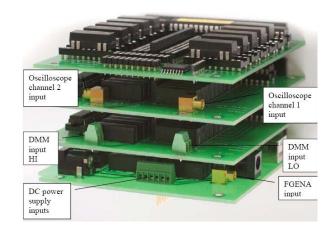
2016-1-ES01-KA203-025327 Erasmus+ - Strategic Partnerships for Higher Education

Speaker André Fidalgo ISEP/IPP

- 1 VISIR System
- 2 VISIR Institutions
- 3 System Usage
- 4 Pilar Approach
- **5 Development**

1. VISIR System

- Open Remote Laboratory
- Directed to Electrical and Electronics Experiments
- Developed at BTH (Blekinge Institute of Technology)
- Launched in 2006



1. VISIR System

- Uses PXI instrumentation by National Instruments
 - Function generator
 - Oscilloscope
 - Digital multimeter
 - Triple output power supply
- Switching Matrix
 - Componente Boards
 - Instrument Boards
- Realistic Interface

2. VISIR Intitutions

- Institutions within PILAR
 - BTH (since 2006)
 - UNED (since 2008)
 - CUAS (since 2008)
 - U Deusto (since 2009)
 - IPP (since 2010)
- Institutions outside PILAR
 - PUC-Rio (since 2016)
 - FW Wien, UFSC, IFSC, UNR, UNSE, Georgia, India

• Number of Users

Partner	Users	Teachers	Institutions
втн	less than 100	less than 10	less than 5
UNED	1000 or more	less than 10	less than 5
CUAS	less than 100	less than 10	less than 5
UDeusto	1000 or more	less than 10	20 or more
ISEP/IPP	1000 or more	10 - 49	5 to 9

2. VISIR Institutions

• Localization, i.e. Languages

Partner	EN	SV	ES	РТ	DE	PL	NL	AR	Other
BTH	х	х		х			х		EL More
UNED	х		х	х	Х		х		
CUAS	x				х				
UDeusto	x		x	х	х	х	х	х	RO, SL, CZ, RU
ISEP/IPP	х	х	х	х		х	х	х	EL, KU

Login Methodology

Partner	Original	LDAP	Other	Guest Login
BTH	1	1	No	Yes
UNED	0	0	JSON	No
CUAS	0	0	GOLAB	Yes
UDeusto	0	2	No	Yes
ISEP/IPP	2	1	No	Yes

• Electrical Experiments

Partner	Active Filters	Passive FIlters	Ohm and KCL (DC)	Ohm and KCL (AC)
BTH	Active	Active	Active	Active
UNED	Active	Active	Active	Active
CUAS	Past	Never	Active	Past
UDeusto	Never	Active	Active	Active
ISEP/IPP	Past	Active	Active	Past

• Electronics Experiments

Partner	Diodes	Transistors	Ampops	Logic
BTH	Active	Active	Active	Past
UNED	Active	Active	Active	Active
CUAS	Active	Past	Past	Past
UDeusto	Active	Active	Active	Never
ISEP/IPP	Active	Active	Active	Never

- Other Experiments
 - Thevenin (Black Box)
 - RL time constant
 - Zener
 - RLC
 - DC-DC converters
 - Temperature Dependency
 - Power Dissipation

4. PILAR Approach – What is it?

- Platform Integration of Laboratories based on the Architecture of visiR – PILAR
- ERASMUS+ European Project
- KA2 Cooperation for Innovation and the Exchange of Good Practices - Strategic Partnerships for higher education

4. PILAR Approach – What is it?

Partners:

Universidad Nacional de Educacion a Distancia (UNED) Blekinge Tekniska Hogskola (BTH) International Association of Online Engineering (IAOE) Universidad de la Iglesia de Deusto Instituto Politecnico do Porto (IPP) Espoon Seudun Koulutuskuntayhtyma OMNIA EVM project management experts sl Fachhochschule Karnten-Gemeinnutzi (CUAS)

4. PILAR Approach – Who Needs it?

- Many different stakeholders, including:
 - high schools
 - universities
 - other education institutions

that need to increase their competences in electronics through real remote electronics experiments covering from simple to sophisticated experiments

- Specifically students and teachers of these institutions that need to increase their practical competences without the problems associated with the maintenance and physical restrictions of real electronics laboratories.
- Curricular development, interinstitutional co-operation, virtual mobility of students and academic staff, and integrated programmes of study, training and research.

4. PILAR Approach - Main Activities

- Building an integrated platform of all the remote VISIR implementations in CUAS, UNED, IPP, UDEUSTO and BTH, that will be accessed as a federation of remote labs
- Building of a set of remote VISIR electric and electronics practices, at different complexities, served as Internet services
- Creation of a set of formal documentation for entering PILAR for use of teachers and universities and schools managements
- Use of all these services in the partners institutions
- Offering to other institutions at local, regional, national and European levels.

A1

4. PILAR Approach - Advantages

- Larger set of practices
- More efficient and effective use of the VISIR resources
- Support for each of the remote lab services offered
- Innovative practical part of subjects
- Better control of the students' learning process

Diapositiva 16

A1

A much larger set of practices, oriented to different and tuned needs, for students in different academic levels at the school and at the university 2- A much more efficient and effective use of the VISIR resources of each of the partners, thanks to the transparent work-balance of users and experiments provided by the federation. The federation of remote labs also will make simple to add new experiments to PILAR becoming it in an easily scalable and maintanable platform

3- A service level agreement (SLA) type for each of the remote lab services offered

4- A much more innovative practical part of subjects related with electronics at high school and grade and master university levels, more flexible and reliable environment, specially taking into account the troubles faced by many students related with the need of moving to where the laboratories are.

5- A much better control of the students' learning process when they carry out real practices on electrical and electronics experiments through the remote laboratories provided by PILAR.

Andre; 07/11/2017

4. PILAR Approach - Characteristics

- 1. Scalability.
 - The VISIR system supports around 50 users at the same time
 - Circuits can be replicated in different VISIR nodes
- 2. Reliability and availability.
 - Redundancy
 - Transparency
- 3. Set of experiments.
 - VISIR is a REAL remote lab
 - User will access the total set of experiments of all the VISIR nodes.
- 4. Tracking system.
 - How many users are accessing each VISIR node
 - Balancing and priorities

4. PILAR Approach - Evaluation Points

- Number of available and federated VISIR platforms in PILAR
- Number of accessible experiments through PILAR
- Number of training courses offered in PILAR for different educational levels
- Number of students involved in training courses
- Number of institutions out of PILAR consortium that will access VISIR
- Number of institutions from countries out of the PILAR consortium scope
- Number of subjects in which PILAR outcomes will be used in regular courses
- Opinions and considerations gathered from surveys
- Support materials and documentation adequacy

5. Development – Ongoing Steps

- Technical Specs for Federation
- Cross User Policies
- Federation Policies on Availability
- System Data Sharing
- Experiment Listing
- Experiment Pedagogical Documentation

5. Development – Guide Examples

VISIR

	R	toteiro da Experiência
Paralelos Resistêr	icias (Ω)	 Observe os valores das resistências ao posicionar o mouse por cima, e confirme utilizando o multímetro digital;
Paralelo AB 2k2 1 Paralelo BC 100k 10	k 470	 A imagem ao lado representa o circuito completo. Teste os diferentes tipos de associações possíveis e confira o valor da resistência equivalente em cada situação, utilizando o multímetro digital;
	Dok W	 Experimente criar associações em série, em paralelas e mistas com diferentes valores de resistências, e confira com os resultados esperados da solução.
		 ATENÇÃO: Ao montar o circuito, sempre respeite a imagem e a tabela ao lado que indica quais resistências podem ser ligadas em paralelo. As resistências em paralelo na imagem podem ser ligadas em série, desde que sejam apenas duas.
470 2	20k	 Exemplo: Pode-se ligar as resistências 2k2 e 1k em paralelo, e em série com a de 100k. Não será possível ligar a resistência de 1k em paralelo com a de 100k, neste caso, o sistema anunciará um erro.

Confira a solução dessa experiência aqui

5. Development – Teacher Interface

sua Max List (se possível) e implementará no sistema do VISIR.			
Formulário		Search:	
	ID	Valor	Nó
Nome:	Condensador	1uF	E
E-mail:	Diodo	1N4148	H
	Diodo	1N4148	E
Imagem do Circuito:	F. Gen		A
Escolher arquivo Nenhum arquivo selecionado	Fonte CC	+6	A
Descrição do Circuito:	Fonte CC	+25	F
	Fonte CC	-25	В
	Indutor	680uH	G
	OP_4_7:4_13:4_14:4_4:4	_6 NC1 G C B NC2 H	H F NC3 u
🖌 Enviar 🕅 Limpar	Resistência	1.2k	A
A Enviar 🛍 Limpar	Previous	1 2 3 4	4 5

5. Development – Max Lists

*Instrument card	*CompBoard6
VFGENA_FGENA1 A 0 max:5	R_R10 A B 100
VDC+6V_3 A vmax:6 imax:0.5	BLACKBOX4_1 0 C D A 1
VDC+25V_24_4:1_7 E vmax:10 imax:0.5	
*CompBoard1	*CompBoard5
compositur	L_L1 A B 680u
R_R11 C 0 4.7k	C_C3 B C 100n
SHORTCUT_1_2 D E	
*Course Doorsel4	R_R3 B C 180
*CompBoard4	R_R4 B C 100
R R1 A B 470	R_R5 B C 27
R_R2 C D 470	R_R6 C D 10k
	R_R7 C D 4.7k
D_D1 A B 1N4148	R_R8 C D 1k
D_D2 C D 1N4148	R_R9 A B 1k
C_C1 B C 220u	

SHORTCUT_1 B C

SHORTCUT_2 D 0 SHORTCUT_3 C D SHORTCUT_4 B 0 SHORTCUT_5 C 0

5. Development – Maxlist Editor

VISIR		Menu +
< Voltar		
	Circuit_P.max	
	VDCCOM_10 VDC+6V_1A R_4_1G16.8k R_4_2 C D 6.8k SHORTCUT_1_5 F 0 SHORTCUT_1_61G SHORTCUT_1_131E SHORTCUT_2_11A C SHORTCUT_3_14 D E SHORTCUT_3_12 C G SHORTCUT_3_14 E F	
	Tenviar CRedefinir	
	Home · Experiências · Professor ·Administrador · Contato · VISIR	
"This project has been funded with support from the European C	commission. This website reflects the views only of the author, and the Commission cannot be held responsible f VISIR+ © 2017	or any use which may be made of the information contained therein"

5. Development – Maxlist Management

Max Lists			₽ 0
Circuit P.max	۲. ۲	Circuit_S.max	۲. ۲.
EXP_1.max	ي م الا 🗶	Exp_2.max	ی ک ۲ ک
TA_circuit_1.max	ĭ ×	TA_circuit_2_RCL.max	⊡ ×
TA_circuit_2_RLC.max	Z ×	TA_circuit_3_a.max	3 ×
TA_circuit_3_b.max	I 🗙	TA_circuit_4.max	🕑 🗙
TA_circuit_5.max	3 ×	TA_demo1.max	🕑 🗙
TA_demo2.max	Z ×	cap_ind_RLCserie.max	3 ×
circ_1_mvb.max	Z ×	circ_2_mvb.max	3 ×
circ_3_mvb.max	Z ×	circ_4_mvb.max	🕑 🗙
diodo_1_funcionamento.max	I 🗹 🗙		

Home · Experiências · Professor ·Administrador · Contato · VISIR

"This project has been funded with support from the European Commission. This website reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein"

VISIR+ © 2017

5. Development - Contact

VISIR		Menu +
	Formulário de Contato	
	Nome:	
	E-mail:	
	Mensagem:	
	Destinatário: Escolher	
	🖈 Enviar 🛍 Limpar	
Hom	e · Experiências · Professor ·Administrador · Contato ·	VISIR

This project has been funded with support from the European Commission. This website reflects the views only of the author and the Commission cannot be held responsible for any use which may be made of the information contained th

VISIR+ © 2017

Co-funded by the Erasmus+ Programme of the European Union

Thank you for your attendance!

Speaker André Fidalgo ISEP/IPP